Inside IBM's 300mm chip fab: Photos

Inside IBM's 300mm chip fab: Photos

Summary: IBM's 300mm chip fab in upstate New York turns out high-performance chips around the clock. ZDNet was invited to take a look inside, and learn about what the future holds for chip making.

SHARE:

 |  Image 4 of 6

  • Preventing contamination on the fab floor is paramount, hence the workers' suits. Handling of the wafers is done by cubed robots such as the one above, which move around on tracks attached to the ceiling. They ferry stacks of wafers in batches of 25 from stockers to machines where the circuitry is printed, before transferring them to other parts of the fab for quality testing. With an older chipset such as the Power7, now two years old, only about three wafers of each set of 25 are tested for imperfections, Arthur says. With a newer chip design, a higher number would be examined.

    There are around 350 tool operators on the fab floor, though their job is to test and check tools rather than operate them. They are joined by nearly 500 workers employed by IBM's partners, such as Samsung, Global Foundries and ST Micro, who have access to the fab and can work on the tools supplied by their companies.

    Alongside IBM Research in nearby Yorktown, much of the fab's work here is focused on developing high-performance chips.

    Arthur says the fab is unusual in having production and development share the same facility. "That's rare in the industry. The plus of it is, if you work together, you can save capital equipment, because you're sharing it. The negative is, if you're sharing it, you fight about who gets it," he says, adding that balancing the needs of the two is one of the biggest challenges of his job.

  • The East Fishkill fab runs three shifts 24/7, and closes down for only three shifts a year: Christmas Eve, Christmas Day and Christmas Night. "We ask for volunteers. We're not at full staff but we actually run those shifts," Arthur says. "The last time this facility closed was four years go. We closed it to do some major preventative maintenance on some of the infrastructure."

    During Hurricane Sandy, in October, the fab didn't lose power, but was hit instead by power spikes. "Our equipment has anywhere from seven to 20 PCs that control it," Arthur explains. "So what appears to be the weak link on the tools is the PCs. If you lose power, or if it drops a certain percent for so many cycles, the PC will just lock up. We ended up with 17 power dips here [during Sandy]. We weathered 15. Number 16 took the fab, shut the tools off." It took about eight hours for the tools to restart, he adds.

    Power to the fab is fed from three directions, Arthur says, "so we can actually take a hit on one, if the other two stay up... What hurts us is if more than one goes down".

  • With so much automation on the fab floor, communication grew to be a problem. IBM resolved the issues by sticking a great big whiteboard in the middle of the fab (visible on the wall of the blue stocker to the left) so that workers can leave notes for the following shift. In a room where one piece of equipment can cost up to $13m, it's a startlingly low-fi touch.

    While the East Fishkill fab is tooled to a 32nm process, IBM is looking at the next steps in the Moore's Law chain. "We are actually running designs in 22nm, the next generation," Arthur says. "There is 14nm in development out there and 10nm is [being developed] in Albany."

    All eyes in the industry are on the shift to 450mm wafers, and the improvements in productivity that should bring. "When the next wafer size hits, you're gonna have to build a new fab, because the tools are not compatible," Arthur explains.

    IBM is one of five companies in a consortium developing the tools to be used in a 450mm facility. "The investments will be mind-boggling," Arthur says. "To build one of these factories now from scratch is about $6bn for about 1,000 wafer strikes a day. This new one will be in the range of $10-12bn." 2016-17 is Arthur's prediction for when the first 450mm fab will be up and running - and he's reluctant even to commit to that.

  • Thumbnail 1
  • Thumbnail 2
  • Thumbnail 3
  • Thumbnail 4
  • Thumbnail 5
  • Thumbnail 6

Topics: Processors, Hardware, IBM, Servers

Kick off your day with ZDNet's daily email newsletter. It's the freshest tech news and opinion, served hot. Get it.

Related Stories

Talkback

3 comments
Log in or register to join the discussion
  • Changes since 1986

    I hosted an A/NZ tour of East Fishkill in 1986. We were the last to see the wafer line where you could actually see the wafers moving through the process on air beds. They were also using angled micro photography to check the solder join points between circuits for chip quality control. Some failed chips were recovered by point-to-point wires and used for down-graded roles.
    Peter
    Chomps
  • 300mm

    I guess i'm missing something as current chips are being made at say 32nanometres. 3 metre chips are just too big ?
    Mytheroo
  • nvm

    ok, looked it up, its a 300mm wafer (30cm not 3m also lol)
    Mytheroo