Linux turns 29: The biggest events in its history so far
A year by year summary of the most significant events in Linux's history to date.
Google made its BigQuery service publicly available last month. So I decided to put it through its paces, and compare it to Microsoft’s Excel and PowerPivot.
You can create your own tables too, of course. Just hover over your dataset and click the “+” sign that appears to the right of its name to bring up the “Create Table” form, shown above. In the form, you need only supply an ID (name) for the table, its schema (expressed as a list of column names and data types) and point to the source file containing the data. Then click OK.
If the file is 10MB or below in size, you can select it right from your own computer’s hard drive. If it’s bigger, you’ll need to push it up to Google Cloud Storage first, and then supply a link to the file, using “gs://” at the beginning of the URI, as seen here.
BigQuery assumes it will be importing from a CSV (comma separated values) text file with no initial row containing column names. If your file uses a non-comma delimiter, or its first row contains column names instead of data, you can tell BigQuery what delimiter to expect and to skip the first row (or first several rows).
This particular CSV file has historical baby name data for six states in the USA. The data was taken from the U.S. Social Security Administration’s namesbystate.zip data collection file, which contains data for all fifty states, each one in a separate file. The single file I built with the just the six states’ data nonetheless has over 1 million rows.
Caption by: Andrew Brust
Join Discussion