One step closer to quantum computers

Summary:Rice University physicists have created a tiny "electron superhighway" that could one day be useful for building a quantum computer.

The promise of quantum computing is largely predicated on whether or not physicists can keep quantum bits, or "qubits," from slipping out of their two-state existence due to quantum fluctuations. This fundamental limitation has spawned research into different approaches to creating qubits.

Credit: Jeff Fitlow/Rice University

The latest comes from Rice University, where physicists have created a device called a "quantum spin Hall topological insulator" which acts as a tiny electron superhighway designed for increased fault-tolerance.

The researchers claim that the device is one of the building blocks needed to create quantum particles that store and manipulate data.

A quantum computer uses quantum particles in place of the digital transistors found in today's microchips. These particles -- atoms, electrons, or qubits -- can be both ones and zeros at the same time, thanks to the quirks of quantum mechanics. This gives quantum computers a huge edge in performing intense computing tasks like code-breaking, climate modeling and biomedical simulation.

"In principle, we don't need many qubits to create a powerful computer. In terms of information density, a silicon microprocessor with 1 billion transistors would be roughly equal to a quantum processor with 30 qubits," said Rui-Rui Du, a Rice physicist behind the research.

Du and colleague Ivan Knez describe their approach to topological quantum computing in a recent paper published in Physical Review Letters.

According to Rice, "topological designs are expected to be more fault-tolerant than other types of quantum computers because each qubit in a topological quantum computer will be made from a pair of quantum particles that have a virtually immutable shared identity."

But there is a catch to the topological approach. Physicists have yet to create or observe one of these stable pairs of particles, which are called "Majorana fermions" (pronounced MAH-yor-ah-na FUR-mee-ons).

Majorana fermions were first proposed in 1937 and the search for the elusive particles is becoming an obsession in the condensed-matter community. Physicists believe the particles can be made by marrying a two-dimensional topological insulator -- like the one created by Du and Knez -- to a superconductor.

According to Knez, if a small square of a topological insulator is attached to a superconductor then the elusive Majorana fermions are expected to appear precisely where the materials meet. If this proves true, the devices could potentially be used to generate qubits for quantum computing.

Knez spent more than a year refining the techniques to create Rice's topological insulator. The device is made from a commercial-grade semiconductor that's commonly used in making night-vision goggles.

Du said it is the first 2-D topological insulator made from a material that physicists already know how to attach to a superconductor.

"We are well-positioned for the next step," Du said. "Meanwhile, only experiments can tell whether we can find Majorana fermions and whether they are good candidates for creating stable qubits."

Related:

Breakthrough removes major hurdle for quantum computing Scientists create a single-electron transistor: A big step for quantum computing?

Topics: CXO, Hardware

About

Christopher Jablonski is a freelance technology writer. Previously, he held research analyst positions in the IT industry and was the manager of marketing editorial at CBS Interactive. He's been contributing to ZDNet since 2003. Christopher received a bachelor's degree in business administration from the University of Illinois at U... Full Bio

zdnet_core.socialButton.googleLabel Contact Disclosure

Kick off your day with ZDNet's daily email newsletter. It's the freshest tech news and opinion, served hot. Get it.

Related Stories

The best of ZDNet, delivered

You have been successfully signed up. To sign up for more newsletters or to manage your account, visit the Newsletter Subscription Center.
Subscription failed.