Lucy Sherriff

<p>Lucy Sherriff is a journalist, science geek and general liker of all things techie and clever. In a previous life she put her physics degree to moderately good use by writing about science for that other tech website, The Register. After a bit of a break, it seemed like a good time to start blogging about weird quantum stuff for ZDNet. And so here we are. </p>

Latest Posts

Lighting up spintronics with re-writeable circuits

Lighting up spintronics with re-writeable circuits

Researchers at the University of California Berkeley (UCB) and the City College of New York (CCNY) have developed a way of controlling the spin of a nucleus that could one day allow us to make rewritable spintronics circuits with light.According to Professor Jeremy Reimer, UCB professor of chemical and biomolecular engineering and the study co-author, the major drawback of existing chips is their permanence: "Once the chip is printed, it can only be used one way," he said.

published June 27, 2012 by

Comments

Graphene gives boost to Edison's Nickel-Iron battery

Graphene gives boost to Edison's Nickel-Iron battery

Graphene has been used to revive a rechargeable battery technology invented by Thomas Edison (yes, that Thomas Edison) more than 100 years ago in a collision of technologies that could prove very fruitful.Edison’s idea was that the batteries would power electric vehicles, but the largely technology fell out of use in the 1970s, because although it is very durable, the charge and discharge times are very slow.

published June 26, 2012 by

Comments

Catching light in a graphene net

Catching light in a graphene net

An international team of physicists led by US researcher Dmitri Basov, of the University of California, demonstrated that light can be caught and controlled within the two dimensional lattice of wonder-material graphene.Theory has suggested that long wavelength – infrared – photons could be caught and moved through graphene at much less than the velocity of light.

published June 21, 2012 by

Comments

Supercharged silicon superposition smashes records

Supercharged silicon superposition smashes records

Superposition, the weird quantum state of existing in two places at once, is a notoriously unstable condition. But now a team of scientists at Oxford University, Simon Frase University and Berlin University report that they have managed to coax a the spins of ultra-pure silicon’s atomic nuclei to remain superpositioned for an astonishing three minutes and 12 seconds.

published June 11, 2012 by

Comments

Graphene finds work as rust-proof coating

Graphene finds work as rust-proof coating

While researchers hoping to make graphene a serious contender to silicon’s electronic throne have some work still ahead of them, the material is finding more immediate application in other industrial areas.(This is probably the materials science version of waiting tables while auditioning for film roles in your spare time.

published May 31, 2012 by

Comments

Hydrogen could be key to logic for graphene oxide

Hydrogen could be key to logic for graphene oxide

Researchers at Georgia Tech in the US have found that the availability of hydrogen might be the key to making graphene oxide behave well enough for use in nanoelectronics.It turns out that for more than a month after production, graphene oxide continues to interact with hydrogen, if it is available.

published May 23, 2012 by

Comments

Samsung draws logic-worthy on/off ratio from graphene

Samsung draws logic-worthy on/off ratio from graphene

Researchers at Samsung’s Advance Institute of Technology have developed a new transistor structure using everyone’s favourite two-dimensional material, Graphene.Despite its wonderful conductivity, electron mobility and so on that make it such an alluring prospect for chip designers bumping into the physical limits of silicon, it has no band gap.

published May 22, 2012 by

Comments

Quantum dots boost graphene's photodetector dreams

Quantum dots boost graphene's photodetector dreams

Researchers working at the Institute of Photonic Sciences (ICFO) in Barcelona have built a super-sensitive photodetector by combining graphene with semiconducting quantum dots that outperforms other graphene based devices by a billion times.Speaking to PhysicsWorld , lead researcher Gerasimos Konstantatos explains: “We managed to successfully combine graphene with semiconducting nanocrystals to create complete new functionalities in terms of light sensing and light conversion to electricity.

published May 18, 2012 by

Comments

Layered graphene bests ITO's transparent conductivity

Layered graphene bests ITO's transparent conductivity

Sandwiching Ferric Chloride between two layers of graphene results in the most flexible, transparent conductive material ever, according to scientists at Exeter University.In a paper in Advanced Materials, the scientists describe how the sandwiching improves graphene’s poor conductivity – relative to the current transparent conductor of choice in electronics: Indium Tin Oxide (ITO).

published May 4, 2012 by

Comments

300 atom quantum simulator smashes qubit record

300 atom quantum simulator smashes qubit record

An international group of scientists, working with the National Institute for Science and Technology (NIST) in the US have built the world’s largest ever quantum simulator, smashing previous record for the number of qubits. The device, which has passed a series of benchmarking tests, could be used to simulate problems in quantum mechanics that would be utterly intractable for a conventional computer.

published May 1, 2012 by

Comments

Bismuth films exhibit graphene-like behaviour

Bismuth films exhibit graphene-like behaviour

MIT researchers have identified a new material that shares many of graphene’s interesting properties. Writing in Nano Letters, the researchers describe how thin films of bismuth-antimony share a property with graphene called two-dimensional Dirac cones.

published April 27, 2012 by

Comments

IBM demos tunable terahertz filters

IBM demos tunable terahertz filters

Graphene has shown itself, once again, to be capable of great wonders, as IBM demonstrates a notch filter that operates in the terahertz – or infrared - range. The company also showed off a linear polariser using the same stacked material.

published April 25, 2012 by

Comments

The best of ZDNet, delivered

You have been successfully signed up. To sign up for more newsletters or to manage your account, visit the Newsletter Subscription Center.
Subscription failed.

Top Stories