Lucy Sherriff

Lucy Sherriff is a journalist, science geek and general liker of all things techie and clever. In a previous life she put her physics degree to moderately good use by writing about science for that other tech website, The Register. After a bit of a break, it seemed like a good time to start blogging about weird quantum stuff for ZDNet. And so here we are.

Latest Posts

Graphene gives renewable fuel research a boost

Is there anything Graphene can't do? The wonder material has added another string to its bow, as researchers have found it can aid artificial photosynthesis, which could help with the creation of renewable fuels

July 19, 2012 by Lucy Sherriff

4 Comments 3 Votes

Lighting up spintronics with re-writeable circuits

Researchers at the University of California Berkeley (UCB) and the City College of New York (CCNY) have developed a way of controlling the spin of a nucleus that could one day allow us to make rewritable spintronics circuits with light.According to Professor Jeremy Reimer, UCB professor of chemical and biomolecular engineering and the study co-author, the major drawback of existing chips is their permanence: "Once the chip is printed, it can only be used one way," he said.

June 27, 2012 by Lucy Sherriff


Graphene gives boost to Edison's Nickel-Iron battery

Graphene has been used to revive a rechargeable battery technology invented by Thomas Edison (yes, that Thomas Edison) more than 100 years ago in a collision of technologies that could prove very fruitful.Edison’s idea was that the batteries would power electric vehicles, but the largely technology fell out of use in the 1970s, because although it is very durable, the charge and discharge times are very slow.

June 26, 2012 by Lucy Sherriff


Catching light in a graphene net

An international team of physicists led by US researcher Dmitri Basov, of the University of California, demonstrated that light can be caught and controlled within the two dimensional lattice of wonder-material graphene.Theory has suggested that long wavelength – infrared – photons could be caught and moved through graphene at much less than the velocity of light.

June 21, 2012 by Lucy Sherriff