Artificial intelligence has a probability problem

A new framework for analytics governance that incorporates all the probabilities included in the machine-learning process -- from data creation to data prep to training to inference -- must be created so businesses aren’t misled.

Arguments to enhance AI's debate skills Tonya Hall speaks with Noam Slonim, senior technical staff member at IBM Research, about finding new ways to enhance AI's debate skills.

The Next IT Transformation

What you need to know before implementing edge computing

These are the questions your firm should ask before going down the route of edge analytics and processing.

Read More

AWS announced Amazon SageMaker Ground Truth to help companies create training data sets for machine learning. This is a powerful new service for folks who have access to lots of data that hasn't been consistently annotated. In the past, humans would have to label a massive corpus of images or frames within video to train a computer vision model. Ground Truth uses machine learning in addition to humans to automatically label a training data set.

Also: Will AI need therapy in the future? CNET

This is one example of an emerging theme over the past year or so -- machine learning for machine learning. Machine-learning data catalogs (MLDCs), probabilistic or fuzzy matching, automated training data annotation, and synthetic data creation all use machine learning to produce or prepare data for subsequent machine learning downstream, often solving problems with data scarcity or dispersion. This is all well and good until we consider that machine learning in and of itself relies on inductive reasoning and is therefore probability-based.

Let's consider how this may play out in the real world: A healthcare provider would like to use computer vision to diagnose a rare disease. Because of sparse data, an automated annotator is used to create more training data (more labeled images). The developer sets a 90 percent propensity threshold, meaning only records with a 90 percent probability of being accurately classified will be used as training data. Once the model is trained and deployed, it is being used on patients whose data is linked together from multiple databases using fuzzy matching on text data fields. Entities from disparate data sets with a 90 percent chance of being the same are matched. Finally, the model flags images with a 90 percent or greater likelihood of depicting the disease for diagnosis.

Also: Top 5: Ways AI will change business  TechRepublic

The problem is that, traditionally, data scientists and machine-learning experts only focus on that final propensity score as a representation of the overall accuracy of the prediction. This has worked well in a world where the data preparation leading up to training has been deductive and deterministic. But when you introduce probabilities on top of probabilities, that final propensity score is no longer accurate. In the case above, there's an argument to be made that the probability of an accurate diagnosis diminishes from 90 percent to 73 percent (90 percent x 90 percent x 90 percent) -- not ideal in a life-and-death situation.

As the emphasis on the need for explainability in AI increases, there needs to be a new framework for analytics governance that incorporates all the probabilities included in the machine-learning process -- from data creation to data prep to training to inference. Without it, erroneously inflated propensity scores will misdiagnose patients, mistreat customers, and mislead businesses and governments as they make critical decisions.


-- By Brandon Purcell, Principal Analyst

How will AI change the way firms work in 2019? Register today for Forrester's complimentary predictions webinar on January 23 at 11am ET.

This post originally appeared here.

Previous and related coverage:

What is AI? Everything you need to know

An executive guide to artificial intelligence, from machine learning and general AI to neural networks.

What is deep learning? Everything you need to know

The lowdown on deep learning: from how it relates to the wider field of machine learning through to how to get started with it.

What is machine learning? Everything you need to know

This guide explains what machine learning is, how it is related to artificial intelligence, how it works and why it matters.

What is cloud computing? Everything you need to know about

An introduction to cloud computing right from the basics up to IaaS and PaaS, hybrid, public, and private cloud.