Just how much do design and data science collaborate?

Findings from our recent survey show that there's room for improvement.

What if I told you that less than half of design teams frequently work with analytics or data science employees during an iterative design process? That's worrying because our research finds that this collaboration is a critical part of effective, modern design. For example, John Maeda, design author and Chief Experience Officer at Publicis Sapient, says that "dataful" is one of four "ingredients" needed to succeed in design. Unfortunately, it's hard to be "dataful" without talking to data scientists who have lots of data.

Last year, Forrester published a report on creating data-fueled products -- digital products that recognize patterns and anomalies relevant to a user's goals in large quantities of data and adjust parts of its user interface in response. In that report, Forrester outlined the collision between design and data science and how it prevents companies from getting the most value from both practices.

Findings from our recent 2019 survey on the state of design teams further validate the lack of collaboration between design and data science teams. The data shows:

  • Just over half (53%) create or validate hypotheses based on data science or analytics findings on a monthly basis.
  • About the same number (51%) review data science and analytics findings in cross-functional meetings on a monthly basis.
  • Just under half (44%) of design teams work with analytics and data science employees during an iterative design process on typical projects.

It's pretty concerning that about half of the design teams that responded don't create or validate hypotheses based on data science or analytics findings, isn't it? And why aren't people with data and analytics backgrounds part of the iterative process?

By now, you're probably thinking, well, those numbers aren't great, but they're also not too bad. If you care about deep collaboration between these groups, here are even more concerning numbers:

  • About 21% say data scientists attend readouts of qualitative research findings or attend research sessions at least monthly (e.g., usability testing, customer interviews, ethnography, etc.).
  • Just under 20% include data science and analytics team members in design sketching sessions at least monthly.

To me, this says that there's little participation from data science or analytics in valuable and complex design work. Most collaboration seems to be superficial. And this gap goes against the best practices Forrester laid out in our report on data-fueled products and in previous blog posts.

Does this sound familiar to you? If so, stop relying on a product manager or marketer to translate data for you. Go directly to find someone in analytics or data science, and start asking questions about how products, features, and customer or business metrics are performing and what those individuals are working on, then enlist them in some sketching and enrich your perspective. You'll be better equipped for the future -- and your customers will benefit, too.

This post was written by Principal Analyst Andrew Hogan, and originally appeared here.