IBM, NYU research shows deep learning can be trained to better spot glaucoma effects

Deep learning models can be trained to learn from retina images and then estimate visual function.

IBM sends Blockchain World Wire for global payments into limited production

Special Feature

The NHS and technology: How innovation is revolutionizing healthcare (free PDF)

AI and robots, IoT, virtual and augmented reality, and wearables—all are innovative technologies that could boost healthcare and productivity across the NHS. This ebook looks at how these technologies are being implemented and their current and future impact on health services.

Read More

IBM and New York University researchers have improved deep learning techniques to better spot glaucoma and detect it early.

Big Blue researchers will present their findings at Association for Research in Vision and Ophthalmology's annual meeting.

In a nutshell, deep learning models can be trained to learn from retina images and then estimate visual function. Those estimates can then be used as a glaucoma indicator. The hope is that non-invasive retina imaging can diagnose glaucoma faster.

Typical visual function tests are based on patient feedback and multiple tests. Glaucoma, the second leading cause of blindness in the world, develops slowly and often diminishes visual function before a diagnosis.

Related: AI vs heart disease: How machine learning could help doctors tackle heart problems before they happen | Researchers find crowdsourcing, AI go together in battle vs. lung cancer

IBM Research and NYU's study used 3D raw Optical Coherence Tomography imaging data to estimate visual field index (VFI) values with an error rate within 2 percent. That error rate was better than tests in the field today.

The VFI is a metric that captures the entire visual field. With artificial intelligence health professionals can estimate visual function and gather data for a glaucoma diagnosis.

Primers: What is AI? | What is machine learning? | What is deep learning? | What is artificial general intelligence?    

IBM and NYU researchers will present 7 abstracts at the annual meeting. 

Related stories: