Expect a pragmatic vision of AI

In 2019, firms will recognize the reality of AI -- what is and isn't, what it can and cannot do -- and focus on its pragmatic side.

Is AI more hype than reality? Web Summit 2018: Artificial intelligence is being hailed and feared, sometimes in equal measure, as the ultimate gamechanger. Onlookers wonder whether AI will deprive us of jobs, change how we run businesses or, on the flipside, fundamentally improve our quality of life. But is the reality that AI has actually been overhyped and is now severely under-delivering? We sit down with Greg Brockman, Nagraj Kashyap, Emily Orton and Jeremy Kahn as they talk AI.

Last year, Forrester predicted that firms would struggle with new technologies, particularly artificial intelligence. This prediction came true: Firms continued with AI experiments that lacked meaningful results. Adoption has now slowed (51 percent adoption in 2017; 53 percent adoption in 2018). And budgets remain low in contrast to the ROI and transformation expectations for AI (under $2 million for 2018). Will firms claim defeat?

Also: Will AI need therapy in the future? CNET

On the contrary -- in 2019, Forrester predicts that firms will address the pragmatic side of AI now that they have a better understanding of the challenges and embrace the idea that "no pain means no AI gain." The AI reality is here. Firms are starting to recognize what it is and isn't, what it can do, and what it cannot. And they are seeing the real challenges of AI versus what they assumed the challenges would be. Firms will focus their attention on the data foundations, take creative approaches to building and holding on to AI talent, weave intelligence into business processes, and begin to establish the mechanisms to understanding why AI is acting the way it is.

Here are the takeaways from the predictions.

Rise Above The "AI Washing"; Don't Let It Stall Your Adoption

AI washing is like greenwashing. Big data firms, for example, may claim that their tech is AI. But just because it has an algorithm doesn't mean it's AI. This phenomenon is everywhere. You can't hide from it, but you can't ignore it. To rise above the AI washing, plan to ground your AI road map by addressing both short-term incremental improvements and long-term moonshot plans.

Also: Can humans get a handle on AI?

AI Will Be A Critical Part Of Your Technology Innovation Chain

AI is an umbrella term that represents multiple technologies, such as machine learning (ML) and natural language processing (NLP). This concert of technologies will lay the foundation to combine with other emerging technologies to create breakthrough opportunities.

Also: 61% of businesses have already implemented AI TechRepublic

The next chapter in AI involves learning from AI pilots and proofs of concept and moving forward continuously and iteratively rather than throwing your hands up in defeat. Overcome your cautious cynicism by over-planning -- dive in anyway and dabble. You'll make rookie mistakes. You'll think of quitting. But you'll strive on to reap tangible benefits and bragging rights.

Download Forrester's predictions 2019 complimentary guide to understand the 14 major dynamics that will impact firms next year.

This post originally appeared here.

Previous and related coverage:

What is AI? Everything you need to know

An executive guide to artificial intelligence, from machine learning and general AI to neural networks.

What is deep learning? Everything you need to know

The lowdown on deep learning: from how it relates to the wider field of machine learning through to how to get started with it.

What is machine learning? Everything you need to know

This guide explains what machine learning is, how it is related to artificial intelligence, how it works and why it matters.

What is cloud computing? Everything you need to know about

An introduction to cloud computing right from the basics up to IaaS and PaaS, hybrid, public, and private cloud.

Related stories: