AI augments and amplifies human cognition

Video: Ethics and responsibilities: Should limits be placed on tech?
Watch the video interview above or read the full transcript below.
Featured
Tonya Hall: Amplifying strength and extending reach. Hi I'm Tonya Hall for ZDNet and joining me is Rob High, Chief Technology Officer for IBM Watson. Welcome Rob.
Rob High: Thank you Tonya, appreciate that.
Tonya Hall: What is your role exactly with IBM Watson?
Rob High: I have been the CTO for IBM Watson. As a result of that, my responsibility has been to drive the technology strategy. Of course, I do some evangelism, as we're seeing here today, but also looking at the tentative vitality of our skills and make sure we got the right people on board that will facilitate the creation of this thing we call AI.
Tonya Hall: You just spoke at Mobile World Congress in Barcelona on the topic of "AI Everywhere, Ethics and Responsibilities." What does that mean? Talk about your presentation.
Rob High: Well, if I can preface this with just a short assertion about what I think is the role of AI. And that is that AI is really about augmenting and amplifying human cognition. And what that means to me, is kind of picking up for where we, as humans, kinda leave off.
I mean, there certain things that we're really good at, as humans, and there's certain things that we fail at. We're not really good at reading large quantities of literature in a day. And, you know, we could, we can't really assimilate all of that and remember or see the patterns of information that are meaningful to us.
So, you know, if these AIs are gonna be useful to us, they're gonna be useful to us because what it's doing is helping us make better business decisions, or help us see different perspectives, or help us see through our own biases, and from that, generate better ideas.
So, AI's role is to augment. It's to assist us and amplify us. And so we need to be thinking seriously about whether AIs are really being deployed that way. Whether, in order to do that, they're making use of information about us that is relevant to the context of our discussion, but yet could also have the potential of being siphoned off from. People are concerned about that, and users are concerned about their data being used in inappropriate ways. Businesses are concerned about their data or the data of their clients being hi-jacked and made use of in inappropriate ways. There is sort of a larger dystopian view that we see out there sometimes where people think of AIs as being something that might rise up and take over. All of these are things that it's never too early to start thinking about.
And understand both how we enable technology to be useful, to be used for good. How to discourage it from being used for bad things, for things where people are being exploited or their information is being abused, and to make sure we have a good sense of what this technology is useful for.
Tonya Hall: So, is AI so good now then that the Turing Test is a thing of the past?
Rob High: I think the Turning Test kind of begs the wrong question in some ways. Cause the Turning Test was all about measuring whether the AI was able to fool other people into believing that the AI was another human being. In other words, it's really a test of whether the AI is replicating the human mind.
Read also: Nvidia aims to extend its lead in AI
And, in many ways, AI is not about replicating the human mind. Frankly, we've got plenty of human minds out there already, and from an economic standpoint, replicating the human mind is probably either not useful, but it's certainly nowhere near as plausible in terms of the current technology.
So rather than focusing on that, what we ought to be thinking about is what can AIs do to augment us? I like to call it Augmented Intelligence, not Artificial Intelligence. It's intelligence in a form that is picking up for where we leave off, but really focusing narrowly on specific areas of skill.
And so when we think about it that way, the Turning Test almost becomes irrelevant. What we need to be thinking about is, is it in fact benefiting people in the decisions that we need to make? Is it helping us through the mundane tasks of our jobs, so that we can really perform the rest of our jobs better?
Tonya Hall: So are there limits then to whether it's Artificial Intelligence or Augmented Intelligence to what it should be allowed to do?
Rob High: Well, everything we know about AI today is limited. We should not presume as being anywhere near the generalizations that we would normally associate with the science fiction of AI. AI have no sense of self, they have no imagination, they have no way of even questioning themselves. They have none of the characteristics that we would normally associate with humans. That's not just a statement of whether we need to limit them, that's just a fact of where we are with the technology, and I think to some extent ... Yeah, economically, it's not that interesting and useful to go build AIs that do something on a broader scale around general intelligence.
I mean, I kinda put it the same way that we think about every other technology. If you go back to the entire history of the human species, what you're gonna find is all the technologies that we've created have been formed as tool that essentially had one or two characteristics. Either they amplify our strength or they extend our reach. You know, everything. Hammers, screwdrivers, shovels, hydrologics. They all have the property of amplifying our strength or extending our reach, and that's really been the nature of what is economically interesting about all those tools.
And the same thing is true here. We gotta be thinking about AI as a tool that amplifies our intelligence, or extends the reach of our intelligence, to benefit what we do, to benefit how we think. And that's not just a function of what's possible or plausible about the technology, it's really a function of what's economically viable.
Tonya Hall: I remember when you introduced IBM Watson on "Jeopardy." What was it about six year ago? And so, six years in technology terms is a long time. Are we, as humans, adapting to and embracing the technology as quickly as technologists expected we would?
Rob High: Before I answer your question, "Jeopardy" was actually aired live on the TV in February 2011. So seven years ago. And it was August 2011 that we realized that there was something to that technology that warranted creating a business value proposition. But to answer your question, yes, people have adapted to AI.
Read also: Kakao adds voice calls to AI speaker
AI is now starting to surface in the form that we think about them. That is, in the form of interpreting and recognizing what I call the human experience. Interpreting the things that we say, and the words, interpreting the things that we see into objects or identify the objects we see in those images. Interpreting and recognizing our intention as we express something. What was it that we were really trying to intend?
Those characters, those examples of AI, are really quite ubiquitous and they're actually much more common than we're often aware of. Whether that is the form of some products that you may we're familiar with like Siri and Google Home, and, more recently, Apple's Home Pod or previously to that their Siri. All of those are doing voice recognition. It's actually more common that many of the times when we call into a call center and you hear that recording saying "This call is being recorded for security, for improving our service." What's happening in the back end, so taking this from recordings and transcribing them automatically.
So, to some extent, we've already sort of assimilated the application, the adaptation, of these AIs into things that we do without really being aware of it in some ways. Or in some ways we're aware of it, but have gotten accustomed to it.
So in that sense, yeah. I think where there is more room for us to adapt and for us to get accustomed is in figuring out when and how to apply these AIs to our own decisions. And this we don't get exposed to as much. Yes, there are voice assistants out there that we can use to ask questions like: What's the tallest mountain in the world? Or please turn on my lights. Or order me new dog food. But those aren't really affecting our decisions. They're giving us information, but I like to say ... You may have heard me say this before in other situations.
But if I say something like what's my account balance? That may be something that I need to know but that's not really my problem. My problem is I'm getting ready to buy something, or I'm trying to figure out how to save up for my kids education, or something behind the question, and AIs have the potential to engage us. What we call "conversational agents" and I use that term to kind of distinguish them from chatbots, which are more like the simple things that we see today.
Read also: Three out of four believe that AI applications are the next mega trend
Read also:10 things you should never do in Excel
But that goes to, well, the data. So whose data is it? Does that data really represent the demographics of the population you're trying to serve and the way they might go back to expressing a question like that? Does it represent the preferences? Does it represent a certain bias that some group may be representing within that training data? And these are things we have to be very diligent about. When we're setting up an AI, the first thing we have to do is look at the data that we're using to train the data and make sure that it's properly representative of the breadth of the population we're trying to serve, the way that they think, the way that they express things. The way that they would recognize something in what they say.
Related stories
- Siri, you're fired: Why Apple needs a new personal assistant
- Oracle vs Google: Android P is for Poisoned Platform
- Why Microsoft is splitting up Windows in its latest reorganization
- Alexa smartphone: Amazon's next strike in the mobile IoT war